home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

“Pasta wheat” genome mapped – new perspectives for breeding
Erbgut des „Pasta-Weizens“ kartiert – neue Perspektiven für die Züchtung


Germany
April 9, 2019

An international research consortium has published the complete genome sequence of durum (pasta) wheat in Nature Genetics. Their paper not only provides insights into the development of this cereal through to the crop plant as we know it today, but also demonstrates possible ways of optimizing the plant through selective breeding. A key role in the study was played by researchers at the Helmholtz Zentrum München and the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben as well as by Italian and Canadian institutes.*
 


© Yulia/ Fotolia.com

 

Humans have been cultivating durum wheat (Triticum durum) for thousands of years. Along with common wheat (Triticum aestivum) it is the most economically significant variety. Durum wheat is used not only to make bulgur and couscous, but also Italian pasta products. Modern varieties of the wheat are derived from wild emmer (Triticum dicoccoides) as the result of domestication and selective breeding. While the human genome contains around 20,000 genes, researchers have found three times that number in durum wheat – to be precise, 66,559 genes. Eighty percent of the genome sequence is composed of repetitive sequences, also known as repeats.

“Our analysis of the Svevo variety shows how breeding has altered the genome,” says Prof. Klaus Mayer, head of the Plant Genome and Systems Biology (PGSB) Department, Helmholtz Zentrum München. “Comparisons with the wild emmer genome sequence, which was published in 2017**, show the areas in which differences exist.” The team found several regions, some of them overlapping, which had been altered by human intervention. These areas are distributed across the entire genome.

However, the scientists discovered that breeding also resulted in undesirable characteristics being selected: if the soil contains cadmium, the heavy metal accumulates in modern durum wheat but not in wild emmer. “This is due to a gene referred to as TdHMA3-B1, which in durum wheat – in contrast to emmer – no longer has a function,” explains Dr. Manuel Spannagl, group leader in the Plant Genome and Systems Biology (PGSB) group at Helmholtz Zentrum München. TdHMA3-B1 codes for a protein that functions as a metal transporter. It eliminates cadmium from emmer but not from durum wheat. “This demonstrates the contribution that genome research is making to modern crop breeding,” says Dr. Spannagl, noting that possible research aims would be to reduce the cadmium burden through selective breeding as well as to generate varieties that are more resistant to heat and drought.

Original publication:
Maccaferri, M et al (2019): Durum wheat genome reveals past domestication signatures and 2 future improvement targets. Nature Genetics. DOI: 10.1038/s41588-019-0381-3


Erbgut des „Pasta-Weizens“ kartiert – neue Perspektiven für die Züchtung

Ein internationales Konsortium hat in Nature Genetics die vollständige Genomsequenz des Hartweizens veröffentlicht. Ihre Arbeit liefert nicht nur Einblicke in die Entwicklung dieses Getreides hin zur heutigen Kulturpflanze, sondern zeigt auch Möglichkeiten auf, die Pflanze durch gezielte Züchtung zu optimieren. Federführend beteiligt waren Forschende des Helmholtz Zentrums München, des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben sowie italienische und kanadische Institutionen.*

Seit Jahrtausenden kultivieren Menschen den Hartweizen (Triticum durum). Er ist neben Weichweizen (Triticum aestivum) die wirtschaftlich bedeutendste Art. Aus Hartweizen entstehen nicht nur Bulgur oder Couscous, sondern auch italienische Teigwaren wie die Pasta. Moderne Sorten des Getreides sind aus Wildem Emmer (Triticum dicoccoides) durch Domestizierung und Selektion hervorgegangen. Während das menschliche Erbgut rund 20.000 Gene enthält, fanden Forscherinnen und Forscher beim Harzweizen das Dreifache, nämlich 66.559 Gene. Zu 80 Prozent besteht die Genomsequenz aus sich wiederholenden Elementen, sogenannten Repeats.

„Unsere Analyse der Sorte ‚Svevo‘ zeigt, wie sich das Genom durch Züchtungen verändert hat“, sagt Prof. Dr. Klaus Mayer. Er ist Leiter der Abteilung Genomik und Systembiologie pflanzlicher Genome (PGSB) am Helmholtz Zentrum München. „Vergleiche mit dem bereits 2017 veröffentlichten Genom des Wilden Emmers** zeigen, in welchen Bereichen es Unterschiede gibt.“ Das Team fand mehrere, teils überlappende Regionen, die sich durch menschliche Aktivitäten verändert hatten. Diese Bereiche sind über das gesamte Genom verteilt.

Die Wissenschaftler fanden allerdings heraus, dass durch die Züchtung auch unerwünschte Eigenschaften selektiert wurden: Enthält der Boden Cadmium, reichert sich das Schwermetall im modernen Hartweizen an, aber nicht im Wilden Emmer. „Verantwortlich ist ein Gen namens TdHMA3-B1, das im Hartweizen – im Gegensatz zu Emmer – seine Funktion verloren hat“, erklärt Dr. Manuel Spannagl, Gruppenleiter in der Abteilung Genomik und Systembiologie pflanzlicher Genome am Helmholtz Zentrum München. TdHMA3-B1 codiert für ein Protein, das als Metalltransporter wirkt. Es eliminiert Cadmium aus dem Emmer, aber nicht aus dem Hartweizen. „Hier zeigt sich, welchen Beitrag die Genomforschung zur modernen Zucht von Nutzpflanzen leistet“, sagt Spannagl. Mögliche Ziele seien, die Cadmiumbelastung durch gezielte Züchtung zu verringern, aber auch Sorten mit höherer Hitze- und Dürreresistenz zu generieren.


Maccaferri, M et al (2019): Durum wheat genome reveals past domestication signatures and 2 future improvement targets. Nature Genetics. DOI: 10.1038/s41588-019-0381-3

* Das Projekt wurde koordiniert vom CREA-Research Centre for Cereal and Industrial Crops, Foggia, Italien, vom National Research Council - Institute of Agricultural Biology and Biotechnology, Mailand, Italien, vom Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Canada, und von der Abteilung Genomik und Systembiologie pflanzlicher Genome (PGSB) am Helmholtz Zentrum München

 



More news from: Helmholtz Center for Environmental Research


Website: http://www.ufz.de

Published: April 9, 2019

The news item on this page is copyright by the organization where it originated
Fair use notice


Copyright @ 1992-2025 SeedQuest - All rights reserved