Gatersleben, Germany
May 8, 2019

Comparison of grains from weedy and domesticated wheat species. Samples originate from the herbarium of the Federal Ex situ Gene Bank at the IPK.
Urkorn- und Kulturkorn im Vergleich. Weizenmuster aus dem Herbarium der bundeszentralen Ex-situ-Genbank am IPK. - Photo: Julie Himpe/IPK
- Twenty-first century farming uses a multitude of high-yielding varieties adapted to a wide range of environments. However, there is the need to continuously breed new varieties of bread wheat to adapt to the changing climates globally.
- In an international study, the exomes of a worldwide panel of 487 wheat genotypes including landraces, cultivars and modern varieties were sequenced. The results provide an updated extensive model of wheat evolution and map the genomic diversity of wheat at the genic, chromosomal and subgenomic levels.
- The reported data showcases a rich source of genetic diversity in wheat that opens new avenues within modern selective wheat breeding.
- The study was published in Nature Genetics.
Since the Agricultural Revolution about 12,000 years ago, humans have been selectively breeding plants with desirable traits such as high grain yield and disease resistance. Over time, Triticum aestivum, otherwise known as bread wheat, has emerged as one of the world’s most important crops. Together with the growing human population and the changing climate, the demand for wheat with a higher yield and additional resilience is increasing. However, for a few years now the average yield increase of wheat is stagnating. In a new international study, the genetic diversity of 487 wheat genotypes originating from large parts of the world has been catalogued and contextualised with agronomic traits. The map of this rich pool of genetic diversity in bread wheat highlights our current knowledge of the ancestry of wheat and opens new avenues within modern selective wheat breeding.
The evolution of wheat is a complex history of hybridisation and gene flow events, which led to the allohexaploid (with six sets of chromosomes) Triticum aestivum, the species of wheat that we know nowadays as bread wheat. The modern bread wheat originated in the Fertile Crescent about 10,000 years ago and its genepool has been shaped by humans as a result of domestication and cultivation. Today, high-yielding varieties of Triticum aestivum can be found all over the world, each variety adapted to the particular environment it is being grown in, making wheat one of the world’s three most important crop species for human calories and protein supply.
The growing demand for wheat, the onset of global warming, and the transitioning of Western farming away from intensive agriculture, are exerting pressure on plant breeders to further adapt and improve modern bread wheat species. However, in order to select and breed new wheat cultivars with new and improved traits, plant breeders require plants with genetic variation for selection and combination during the breeding process. A new international study of bread wheat has now revealed knowledge of an extensive and rich gene pool for future breeding improvements of Triticum aestivum.
In this study, the exomes of 487 wheat genotypes from 68 countries around the world, including landraces, cultivars, as well as modern varieties, were sequenced. The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben) was able to contribute to this by providing wheat samples from the Federal Ex situ Gene Bank. Utilising the Refseqv1.0 reference sequence of the bread wheat landrace “Chinese Spring”, which had been published by the “International Wheat Genome Sequencing Consortium” (IWGSC) in 2017, the collaborating researchers were able to compile a comprehensive overview of wheat genomic diversity at the genic, chromosomal and subgenomic levels. This enabled them to refine and expand the model of wheat evolution and to decipher the genetic origins of modern day wheat species. As such, the durum wheat lineage was confirmed as the most likely ancestor of today’s bread wheat cultivated germplasm. Moreover, by investigating the selection footprints of wheat, the scientists showcased the effects of range expansion and allelic variants selected since the beginning of wheat domestication.
The reported data is another step towards the assembly of the “pan genome” of wheat – the description of all the genes and genetic variations within wheat, which will be a valuable resource for plant researchers and wheat breeders alike. However, the study as it stands already reveals a rich genetic data resource, which can be utilised for improving genetic traits in bread wheat, from environmental adaptation to improved yield and disease resistance. Moreover, the results illustrate our current knowledge of the ancestry of bread wheat, highlighting our cultural history as farmers and plant breeders.
Original publication: Pont C. et al. (2019), Tracing the ancestry of modern bread wheats. Nature Genetics. DOI: 10.1038/s41588-019-0393-z https://www.nature.com/articles/s41588-019-0393-z
Figure (for free use): https://ipk-cloud.ipk-gatersleben.de/s/zbJomY9d36DcCHH
Neue Möglichkeiten zur Verbesserung des modernen Weizens – Internationale Studie zeigt Abstammung und genetische Vielfalt des Brotweizens auf
- In der modernen Landwirtschaft wird eine Vielzahl ertragsreicher Kulturpflanzen, welche an verschiedenste Umweltbedingungen angepasst sind, angebaut. Trotzdem ist es notwendig, die landwirtschaftlich genutzten Sorten, zum Beispiel von Brotweizen, fortlaufend durch Zuchtbemühungen zu verbessern und an sich verändernde Klimabedingungen anzupassen.
- In einer internationalen Studie wurden die Exome von 487 Weizen-Genotypen, einschließlich Landrassen, Kulturvarietäten und moderner Variationen, sequenziert. Die Ergebnisse kartieren die genomische Diversität des Weizens auf der Ebene einzelner Gene, der Chromosomen sowie der Subgenome und erweitern das Modell der Weizenevolution.
- Die Daten präsentieren eine reiche Quelle genetischer Diversität im Weizen, welche nun neue Möglichkeiten in der modernen selektiven Weizenzucht eröffnet.
- Die Studie wurde in Nature Genetics veröffentlicht.
Schon seit der Landwirtschaftlichen Revolution vor ca. 12.000 Jahren züchten Menschen selektiv Pflanzen mit vorteilhaften Eigenschaften, so wie einer hohen Kornzahl oder Resistenz zu Krankheiten. Im Laufe der Zeit entwickelte sich Triticum aestivum, besser bekannt als Brotweizen, zu einer der wichtigsten Feldfrüchte der Welt. Zusammen mit einer wachsenden Bevölkerung und einem sich verändernden Klima wächst die Nachfrage nach Weizen mit einem höheren Ertrag und zusätzlichen Resistenzen fortlaufend. Jedoch stagniert der durchschnittliche Weizenertrag nun bereits seit einigen Jahren. In einer neuen internationalen Studie wurde die genetische Diversität von 487 Weizengenotypen aus verschiedenen Teilen der Welt katalogisiert und in Zusammenhang mit ihren agronomischen Eigenschaften gestellt. Die Kartierung dieses reichen Pools an genetischer Diversität in Brotweizen unterstreicht die aktuelle Theorie zur Abstammung des Weizens und eröffnet neue Wege in der modernen selektiven Weizenzucht.
Die Evolution des Weizens ist eine komplexe Geschichte aus Hybridisierungs- und Genfluss-Ereignissen, welche zu der allohexaploiden (mit sechs Chromosomensätzen) Weizenart Triticum aestivum führte, die wir heutzutage als Brotweizen kennen. Der moderne Brotweizen entstand vor ca. 10.000 Jahren im Fruchtbaren Halbmond und sein Genpool wurde von Menschenhand in Folge von Domestizierung und Kultivierung geformt. Heutzutage findet man weltweit ertragsreiche Brotweizensorten, wobei jede Variation an die speziellen Umweltbedingungen, in der sie herangezogen wird, angepasst ist. So deckt Weizen, als eine der drei wichtigsten Feldfruchtarten, ca. 20 Prozent der Kalorien und Proteine, die die Menschen weltweit verbrauchen.
Die wachsende Nachfrage nach Weizen, ein sich erwärmendes Klima und die Umstellung der westlichen Landwirtschaft, fort von intensiver Landwirtschaft, üben Druck auf Pflanzenzüchter aus, die modernen Brotweizensorten weiter anzupassen und zu verbessern. Jedoch benötigen Pflanzenzüchter Pflanzen mit genetischer Variabilität, die sie während des Zuchtprozesses selektieren und kombinieren können, um so Weizen-Kulturvarietäten mit neuen und verbesserten Eigenschaften zu züchten. Eine neue internationale Studie von Brotweizen hat nun einen umfangreichen genetischen Pool für zukünftige züchterische Verbesserungen von Triticum aestivum aufgetan.
In dieser Studie wurden die Exome von 487 Weizen-Genotypen aus 68 Ländern, einschließlich Landrassen, Kulturvarietäten und modernen Varietäten, sequenziert. Das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben konnte dabei Proben von verschiedenen Weizenarten aus der bundeszentralen Ex-situ-Genbank zur Studie beisteuern. Indem sie die Refseqv1.0 Referenzsequenz der Brotweizenlandrasse “Chinese Spring”, welche vom „Internationalen Konsortium zur Sequenzierung des Weizengenoms“ (IWGSC) 2017 publiziert wurde, als Ankergenom nutzten, konnten die Forscher eine umfangreiche Übersicht der Vielfalt des Weizens auf der Ebene der Gene, der Chromosomen und auf dem Niveau der drei Subgenome, welche im Genom des Brotweizens verschmolzen sind, zusammenstellen. Dies ermöglichte den Wissenschaftlern, das Modell der Weizenevolution zu erweitern und weiterzuentwickeln und die genetischen Ursprünge des modernen Brotweizens zu entschlüsseln. So wurde bestätigt, dass die Linie des Hartweizens, des Durumweizens, mit hoher Wahrscheinlichkeit der Vorfahre des Keimplasmas unseres modernen Brotweizens ist. Zudem zeigten die Forscher durch die Untersuchung der Fußabdrücke der Selektion des Weizens, welche Effekte Allel-Varianten besitzen, auf welche seit dem Beginn der Weizendomestikation selektiert worden war.
Die Daten, welche im Rahmen der Studie veröffentlicht wurden, sind ein weiterer Schritt in Richtung der Erstellung eines “Pangenoms” des Weizens – die Beschreibung aller Gene und genetischer Variationen des Weizens weltweit. Dieses ist gleichermaßen eine dringend benötigte Ressource für die Forschung und die Züchtung neuer, verbesserter Weizensorten. Die Studie an sich stellt bereits eine reiche genetische Datenressource dar, welche unmittelbar zur Verbesserung der Eigenschaften im Brotweizen verwendet werden kann, von der Anpassung an Umweltbedingungen bis zu verbessertem Ernteertrag und einer erhöhten Krankheitsresistenz. Zudem stellen die Ergebnisse den aktuellen Kenntnisstand zur Abstammung des Brotweizens dar und unterstreichen unsere kulturelle Vorgeschichte als Bauern und Pflanzenzüchter.
Originalpublikation: Pont C. et al. (2019), Tracing the ancestry of modern bread wheats. Nature Genetics. DOI: 10.1038/s41588-019-0393-z https://www.nature.com/articles/s41588-019-0393-z