home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Origami auf der Samenkapsel - Die Deckel über den Samenbehältern einer Mittagsblume falten sich auf, wenn eine Wabenstruktur auf ihrer Innenseite aufquillt


Germany
June 9, 2011

Manche Pflanzen verbreiten ihre Samen geradezu kunstvoll: Die Samenkapseln der Mittagsblume Delosperma nakurense etwa falten Deckel über den Samenkammern in der Art eines beweglichen Origamis auf, sobald sie von Regen benetzt werden. Das haben Forscher des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der Technischen Universität Dresden in einer genauen Untersuchung des Öffnungsmechanismus herausgefunden. Die Deckel klappen demnach auf, weil Zellen auf ihrer Innenseite Wasser aufnehmen und ihre Struktur ändern. So stellt die Pflanze, die in sehr trockenen Gegenden wächst, sicher, dass ihre Saat gute Chancen hat aufzugehen. Die Forscher möchten nach diesem Vorbild nun Materialien entwickeln, die sich bewegen, wenn sie feucht werden oder wenn sich ihre Temperatur ändert

 © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung
Die Samenkapsel der Mittagsblume D. nakurense öffnet sich im richtigen Moment. Solange Trockenheit herrscht, verschließen fünf Deckel die Kapsel (links). Sobald es regnet, klappen die fünf Deckel der Kapsel auf (rechts). Sie werden von einem quellbaren Gewebe aufgedrückt, das sich mit Wasser vollsaugt.
© Matt Harrington / MPI für Kolloid- und Grenzflächenforschung


Um sich zu regen, brauchen einige Pflanzen keine lebendigen Zellen, die mit ihrem Stoffwechsel eine Bewegung antreiben. Grannen krümmen sich, wenn sie feucht werden, Zapfen öffnen sich, wenn sie an der Luft trocknen. „Doch bei den Samenkapseln Delosperma nakurense haben wir eine ausgesprochen komplexe Bewegung von nicht mehr lebenden Pflanzenmaterial beobachtet“, sagt Ingo Burgert. Der Wissenschaftler leitet am Max-Planck-Institut für Kolloid- und Grenzflächenforschung eine Arbeitsgruppe in der Abteilung Biomaterialien von Peter Fratzl und hatte gemeinsam mit Christoph Neinhuis von der TU Dresden die Idee, den Öffnungsmechanismus der Samenkapseln von D. nakurense zu erforschen.

Das Forscherteam hat herausgefunden, dass sich die Deckel der Samenkapseln an einer Art Gelenk auffalten, wenn sie feucht werden. Umgekehrt schließen sie sich wieder, sobald sie trocknen. Dabei verändert sich auch die Krümmung der Deckel, so dass die Klappen die Samenkammern bei Trockenheit dicht verschließen. Die Krümmung verhindert zudem, dass sich ein Verschluss unbeabsichtigt öffnet. „Es handelt sich also um einen koordinierten Faltmechanismus in zwei Richtungen, wie man ihn von beweglichen Origamis kennt“, sagt Matthew Harrington, der diese Bewegung gemeinsam mit seinen Kollegen im Detail analysiert hat. Demnach verformen sich die fünf Deckel der Samenkapsel aufgrund ihrer raffinierten Struktur und einer geschickten Kombination der Eigenschaften verschiedener biologischer Materialien.

Die Deckel besitzen eine dreieckige Form, so dass die Samenkapsel in geöffnetem Zustand an einen fünfzackigen Stern erinnert. Sie tragen ein stark quellbares Gewebe und zwar auf der Seite, die im geschlossenen Zustand nach unten weist und im offenen nach oben. Das Gewebe teilt sich in zwei Hälften und läuft auf den offenen Deckeln – wenn die Kapsel also feucht ist – von innen nach außen. Die beiden Hälften schließen sich dann zu einem schmalen Grat. Bei Trockenheit trennt ein Spalt die beiden Hälften des Gewebes. In diesen Spalten befinden sich im trockenen Zustand die Trennwände der fünf Samenkammern, so dass die Kammern dicht verschlossen sind.

Quellende Zellulose öffnet die Samenkapsel

Wenn der Deckel aufklappt, verformt er sich vor allem dort, wo er an der Kapsel ansetzt. „Dieser Abschnitt wirkt wie ein Gelenk“, sagt Matthew Harrington. Wie sich der Verschluss öffnet, offenbarte den Forschern aber erst ein sehr genauer Blick auf die Struktur des quellbaren Gewebes. Dieses besteht nämlich aus oben offenen, mehr oder weniger sechseckigen Zellen, die eine Wabenstruktur bilden.

 © Matt Harrington / MPI für Kolloid- und Grenzflächenforschung
Die Wabenstruktur, die sich mit Wasser vollgesogen und bevorzugt in einer Richtung ausgedehnt hat. Blau haben die Forscher die quellbare Zellulose eingefärbt. Rot markiert das Lignin in den Zellwänden.
© Matt Harrington / MPI für Kolloid- und Grenzflächenforschung

 

Der Öffnungsmechanismus funktioniert aber nur, weil die Zellen aus zwei verschiedenen Materialien aufgebaut sind, wie die Forscher in spektroskopischen Untersuchungen festgestellt haben: Die Zellwände bestehen im Wesentlichen aus Zellulose und Lignin, einem Hauptbestandteil von Holz. Lignin nimmt wenig Wasser auf. Im Zellinneren befindet sich dagegen Zellulose ohne Lignin, die viel Wasser aufsaugt und dabei stark quillt. Damit ist die Maschine komplett, die quasi mit Wasserkraft ein Origami faltet: „Wenn die Zellulose sich ausdehnt, weitet sie die sechseckigen Zellen vor allem in Längsrichtung des Deckels“, erklärt Harrington. So dehnt sich die Wabenstruktur in dieser Richtung aus und drückt dabei den Deckel auf. Umgekehrt schließt sich die Klappe wieder, wenn die Zellulose trocknet und die Wabenstruktur sich zusammenzieht.

„Der Mechanismus ist für technische Anwendungen interessant, weil die Energie für die gerichtete Bewegung bereits im Material gespeichert ist“, sagt Peter Fratzl. Im Rahmen des von der DFG geförderten Schwerpunktprogramms 1420 “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials” möchten die Wissenschaftler dieses Konzept nun in eine Technik übertragen, die etwa in der Biomedizin oder der Architektur Anwendung finden könnte. Das Prinzip lässt sich zudem auf Materialien übertragen, die sich unterschiedlich stark ausdehnen oder zusammenziehen, wenn sich die Temperatur ändert. Eine Markise entfaltet sich dann irgendwann vielleicht von selbst über der Terrasse, wenn die Sonne ungemütlich heiß brennt.

 



More news from: Max Planck Gesellschaft


Website: http://www.mpg.de

Published: June 9, 2011

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2025 SeedQuest - All rights reserved