Vienna, Austria
October 31, 2011
Genetic research at the Vienna University of Technology (TU Vienna) yields remarkable insights on mould fungi. This opens the door to the specialized use of fungi in agriculture.
![T. harzianum T. harzianum](http://www.tuwien.ac.at/typo3temp/pics/9950242319.jpg)
T. harzianum (Foto: Walter M. Jaklitsch) Copyright TU Wien
We know them from our garden, from damp cellars or from the fridge - mould fungi can be found almost everywhere. Their success is due to their remarkable versatility: depending on external conditions, they can choose quite different lifestyles. Sometimes fungi can be very useful for plants. They can shield the plants from diseases and at the same time boost their growth. Genetic studies at the Vienna University of Technology show that fungi can be used as an eco-friendly alternative to conventional fertilizers and plant protecting agents. The research results have now been published in “Nature Reviews Microbiology”.
Masters of Versatility
Mould fungi can grow inside plants just as well as on the bark of a tree – or even on top of other fungi. It can be extremely hard to classify fungi just by optical inspection. Their appearance varies immensely depending on the lifestyle of the individual fungus. Also, mould fungi can go through different development stages, much like caterpillars and butterflies. “Only genetic analysis shows which fungus belongs to which species – and what a certain species is capable of”, Irina Druzhinina (photo) from the TU Vienna explains.
Weaponry Encoded in the Genes
The genome of three important species of the genus Trichoderma has been completely sequenced. Computer analysis can now show the evolutionary relationship between the fungi, and it can determine special capabilities and strong points of the fungal species. “A closer look at the genome shows us what the mould fungi can do, and how versatile they are”, says Irina Druzhinina. In the fungal DNA, there are lots of genes associated with a sensitive perception of the outside world. Therefore, the fungi can react to subtle signals from their environment. The Trichoderma are excellently equipped to ingest sugar – from other plants, or even from other fungi. They can attach to wet or dry surfaces, to human skin, to plants or roots. In addition, there is an arsenal of chemical weaponry encoded in their DNA. Trichoderma can attack other fungi or bacteria with powerful toxins.
Nature’s Chemical Plants
All this knowledge about fungal DNA is necessary in order to understand the 160 other Trichoderma-species, which are being investigated at the TU Vienna. For years, Professor Christian Kubicek’s research group has been working on these fungi. By now, an internationally renowned collection of data and specimens has been established. “We want to understand the evolutionary history of the fungi, and at the same time study their lifestyles in different environments”, Irina Druzhinina explains. That way, it is possible to choose exactly the right fungus for a particular application. With sufficient knowledge about the genetics of the fungi, certain species of mould fungus can be used instead of chemical plant protecting agents. In the best case scenario, the fungus even boosts the growth of the plant. “The fungi could be applied to fields and meadows – in much the same way as artificial plant protecting agents are being used now”, Irina Druzhinina believes.
It is important not to disturb the ecosystem; fungi should only be used where they occur naturally. “To cure the plant diseases of coffee beans in Africa, we will have to use different fungi than those we have here in Europe”, Irina Druzhinina explains. But everywhere in the world, a vast variety of mould fungi can be found. We just have to understand their genes sufficiently well to use the right species for the right applications.
Quelle
Pilze als Pflanzenschutzmittel
Quelle
Genetische Forschung an der TU Wien bringt überraschende Erkenntnisse über Schimmelpilze ans Licht – und ermöglicht den gezielten Einsatz von Pilzen in der Landwirtschaft
Wir kennen sie aus dem Garten, aus feuchten Kellern oder auch aus dem Kühlschrank: Schimmelpilze sind fast überall zu finden. Ihr Erfolg liegt an ihrer unglaublichen Vielseitigkeit. Je nach den äußeren Bedingungen können Schimmelpilze ganz unterschiedliche Überlebensstrategien einschlagen, und manche dieser möglichen Pilz-Lebensformen können sehr nützlich für Pflanzen sein. Pilze können Pflanzen vor Krankheiten schützen und gleichzeitig ihr Wachstum fördern. Genetische Studien an der TU Wien zeigen, dass Pilze als umweltfreundliche Pflanzenschutz- und Düngemittel eingesetzt werden können. Die Forschungsergebnisse wurden nun in einem Artikel für das Fachjournal „Nature Reviews Microbiology“ zusammengefasst.
Meister der Vielseitigkeit
Schimmelpilze können im Inneren von Pflanzen genauso wachsen wie auf Baumrinde – oder sogar auf anderen Pilzen. Durch bloßes Hinsehen lässt sich kaum erkennen, welchen Pilz man vor sich hat: Das Aussehen einer Pilz-Spezies kann je nach Lebensstil völlig unterschiedlich sein, außerdem können Schimmelpilze verschiedene Entwicklungsstadien durchlaufen – ähnlich wie Raupe und Schmetterling. „Nur mit genetischen Analysen lässt sich herausfinden, welcher Pilz zu welcher Spezies gehört – und wozu die einzelnen Spezies fähig sind“, erklärt Irina Druzhinina vom Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften der TU Wien.
Die genetische Trickkiste
Das Genom von drei besonders wichtigen Pilzarten der Gattung Trichoderma ist bereits vollständig sequenziert. Mit Hilfe von Computeranalysen lässt sich nun untersuchen, wie die Pilze evolutionsbiologisch voneinander abstammen und wo die Besonderheiten und Stärken der einzelnen Schimmelpilz-Arten liegen. „Ein genauer Blick auf das Genom zeigt, welches Potenzial in den Pilzen steckt und wie vielseitig sie sind“, sagt Irina Druzhinina. In der Pilz-DNA fanden sich besonders viele Gene, die mit sensiblem Wahrnehmen äußerer Einflüsse in Verbindung zu bringen sind. Die Pilze können daher auf subtilste Signale von außen reagieren. Außerdem sind die Trichoderma-Pilze genetisch bestens dafür ausgestattet, von außen Zucker aufzunehmen – von Pflanzen, und sogar von anderen Pilzen. Sie können sich auf feuchten wie auch auf trockenen Oberflächen festhalten, auf menschlicher Haut, auf Pflanzen oder tief im Wurzelwerk. Außerdem ist in ihrem Genom ein ganzes Arsenal an chemischen Waffen codiert. Sie können mit mächtigen Giftstoffen andere Pilze genauso attackieren wie etwa Bakterien.
Natürliche Chemiefabrik
Dieses genetische Wissen ist nötig, um die 160 weiteren Trichoderma-Spezies zu verstehen, die an der TU Wien untersucht werden. Seit Jahren sammelt die Forschungsgruppe von Prof. Christian Kubicek Information über die Pilze – mittlerweile verfügt man über eine international beachtete Sammlung von Daten und Pilzkulturen. „Für uns ist es wichtig, die Evolutionsbiologie der Pilze zu verstehen, und gleichzeitig die Lebensweise der Pilze in unterschiedlichen Umgebungen zu studieren“, erklärt Irina Druzhinina. Dadurch wird es möglich, treffsicher die richtigen Pilze für eine bestimmte Anwendung herauszusuchen. Anstatt chemische Pflanzenschutzmittel gegen bestimmte Pflanzenkrankheiten einzusetzen lässt sich – mit dem entsprechenden mikrobiologischen Wissen – eine Pilz-Spezies finden, die auf ganz natürliche Weise eine ähnliche Wirkung hat. Im optimalen Fall wird zusätzlich auch noch das Wachstum der Pflanze gefördert. „Diese Pilze könnte man ganz einfach auf Felder aufbringen, so wie man das heute mit Kunstdünger macht“, meint Irina Druzhinina.
Wichtig ist es dabei, das lokale Ökosystem nicht zu stören. Pilze sollen nur dort eingesetzt werden, wo sie auch natürlich vorkommen. „Um Pflanzenkrankheiten von Kaffeebohnen in Afrika zu heilen wird man daher andere Pilze verwenden als jene, die bei uns in Europa vorkommen“, erklärt Irina Druzhinina. Doch überall auf der Welt findet man eine Vielfalt von Trichoderma-Pilzen. Es geht also nur noch darum, sie ausreichend gut zu verstehen, um überall die richtigen Spezies für die richtige Anwendung auswählen zu können.