home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

Künstliche Photosynthese - An der TU Wien wurden Quanteneffekte untersucht, die bei der Photosynthese wichtig sind. Wie sich zeigt, spielen molekulare Vibrationen eine zentrale Rolle
The quantum physics of artificial light harvesting - How molecular vibrations make photosynthesis efficient


Vienna, Austria
July 13, 2015

Die untersuchten makromolekularen Aggregate – 15 nm im Durchmesser, bis zu hunderte Mikrometer lang
Die untersuchten makromolekularen Aggregate – 15 nm im Durchmesser, bis zu hunderte Mikrometer lang

Die Natur ist nicht dumm. Mit beeindruckender Effizienz können Pflanzen oder Bakterien das Licht der Sonne für die Photosynthese nutzbar machen. Seit Jahren wird diskutiert, ob Quanteneffekte für diese Effizienz verantwortlich sind. Man beobachtete nämlich, dass Moleküle bei der Photosynthese erstaunlich lange in einem Zustand verweilen können, den man nur quantenphysikalisch verstehen kann. Anhand eines Modellsystems wurde dieser Effekt an der TU Wien nun untersucht. Dabei zeigte sich: Die heiß diskutierten langlebigen Quantenzustände sind ein Nebenprodukt eines anderen Phänomens. Die Kopplung zwischen Vibrationen und Elektronen der Moleküle stellt sich als entscheidend heraus, dieser Effekt erklärt die Messungen nun vollständig.

Warm, feucht und wirr

Ein biologisches System wie eine lebende Zelle ist eigentlich kein gutes Quantenlabor. „Zellen sind warm, nass und unordentlich. Genau so eine Umgebung will man normalerweise vermeiden, wenn man Quantenexperimente durchführt“, erklärt Jürgen Hauer vom Institut für Photonik der TU Wien. Man stellte fest, dass das Verhalten bestimmter Molekülverbände, wie sie auch bei der Photosynthese eine entscheidende Rolle spielen, nur quantenphysikalisch erklärbar ist.

„Das Licht regt die Molekülverbände an und bringt sie auf ein höheres Energieniveau“, sagt Jürgen Hauer. „Quantenphysikalisch ist es möglich, dass sie zwei verschiedene Energien gleichzeitig annehmen.“ Solche Überlagerungen werden normalerweise sehr rasch zerstört, die klassische Physik erlaubt nur eindeutige Werte für die Energie, keine Überlagerung zweier Werte. Bei der Photosynthese (bei Raumtemperatur) überleben diese Quanten-Zustände aber für die Dauer von hunderten Femtosekunden bei Raumtemperatur. Das ist für alltägliche Maßstäbe zwar bloß ein winziger Augenblick, auf quantenphysikalischen Zeitskalen ist das aber erstaunlich lange.
„Dadurch drängte sich natürlich die Frage auf, ob diese erstaunlich lang anhaltende Quanten-Kohärenz für die Effizienz der Photosynthese notwendig ist“, sagt Jürgen Hauer. Er selbst war davon nicht überzeugt: „Unser Tageslicht ist kein Quanten-Licht, die Sonne ist kein Laser“, erklärt Hauer. „Es ist daher nicht wirklich nachvollziehbar, warum quantenphysikalische Kohärenz nötig sein soll um das Licht optimal zu nutzen.“

Das Vibrieren der Moleküle

Chlorophylle oder andere Moleküle, die das Sonnenlicht umwandeln können, sind nicht zufällig verteilt, sondern finden sich zu Gruppen zusammen. Dadurch ist es möglich, dass diese Moleküle gegeneinander vibrieren. In den Photonik-Labors der TU Wien wurde das mit einem Modellsystem untersucht. Um dem Mechanismus genau auf die Spur zu kommen, analysierte man keine lebenden Zellen, sondern ein ähnliches, künstlich hergestelltes und geordnetes System aus Cyaninfarbstoff-Molekülen.

Dabei zeigte sich, dass Vibrationen eine ganz entscheidende Rolle spielen. „Die Vibrationen koppeln verschiedene Energiezustände miteinander, man spricht von vibronischen Anregungen – Vibration und elektronische Zustände gehören untrennbar zusammen, sie werden ununterscheidbar“, sagt Jürgen Hauer. Diese vibronische Kopplung ermöglicht den schnellen und nahezu verlustfreien Transfer der Lichtenergie in Lichtsammelkomplexen. Diese Molekülverbände werden durch das Licht zunächst angeregt und in einen Zustand hoher Energie gebracht. Ähnlich wie ein Ball auf einer Treppe von Stufe zu Stufe nach unten fällt, muss die Energie Schritt für Schritt verringert werden, um in der Zelle genutzt werden zu können. Beim wichtigen ersten Schritt dieser Energie-Kaskade spielen die Vibrationen ihre entscheidende Rolle.

Lernen von der Natur

Jürgen Hauer, der 2012 für seine Arbeit mit einem START-Preis des FWF ausgezeichnet wurde, möchte mit seinen Experimenten die Tricks der Natur nutzbar machen. Biologische Zellen sind in den ersten Schritten der Verarbeitung von Lichtenergie deutlich effizienter als künstliche Solarzellen: neun von zehn Photonen werden in Bio-Systemen in elektrochemische Energie umgewandelt. In den später ablaufenden Schritten sinkt zwar die Effizienz, doch auch das hat seinen Sinn: Die Zelle gewinnt dadurch an Flexibilität und kann bei ganz unterschiedlichen Lichtverhältnissen überleben. Ein besseres Verständnis der natürlichen Photosynthese soll dazu führen, dass künftige Generationen von Solarzellen ähnlich gute Eigenschaften haben wie die biologischen Kraftwerke der Zelle, die von der Evolution über Milliarden Jahre optimiert worden sind.

Die Veröffentlichung in Nature Communications ist das Produkt einer Kooperation zwischen sechs europäischen Forschungsgruppen aus Wien, Prag, Ulm, Lund, Berlin und Cartagena (Spanien).


Weitere Informationen:

http://Originalpublikation: „Vibronic origin of long-lived coherence in an artificial molecular light harvester”: http://www.nature.com/ncomms/2015/150709/ncomms8755/full/ncomms8755.html
http://Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/photosynthese


The quantum physics of artificial light harvesting - How molecular vibrations make photosynthesis efficient

Plants and bacteria make use of sunlight with remarkably high efficiency: nine out of ten absorbed light particles are being put to use in an ordinary bacterium. For years, it has been a pressing question of modern research whether or not effects from quantum physics are responsible for this outstanding performance of natural light harvesters. A team of European research groups, a collaboration between universities in Vienna, Ulm, Cartagena, Prague, Berlin and Lund, have examined these quantum effects in an artificial model system. It was shown that the hotly debated quantum phenomena can be understood as a delicate interplay between vibrations and electrons of the involved molecules. The resulting theoretical model explains the experiments perfectly. The article was published in Nature Communications.

The studied artificial light harvester is a supramolecule, consisting of hundreds of thousands of light absorbing molecules, arranged in close proximity to one another and in an orderly fashion. Such architecture puts these systems in between noisy living cells and strictly organized quantum experiments at low temperatures: supramolecules are still governed by the same quantum effects as natural photosynthetic systems, but without the noisy background that makes their investigation so difficult in biological systems. The research team employed polarized light to isolate the desired quantum-dynamical effects. Studying such ordered systems does not only further our understanding of natural photosynthesis, it also helps us to appreciate the physical mechanisms necessary for energy-efficient, cheaper, more flexible and lighter photovoltaic cells.

Article reference: "Vibronic origin of long-lived coherence in an artificial molecular light harvester"
 



More solutions from: Technische Universität Wien


Website: https://www.tuwien.ac.at/

Published: July 13, 2015


Copyright @ 1992-2025 SeedQuest - All rights reserved